Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 585
Filtrar
1.
Methods Mol Biol ; 2782: 97-112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622395

RESUMO

Simple and reproducible 3D cell culture systems that mimic biological interactions within physiological tissues (biomimetics) can provide unique insight for scientific inquiries compared to 2D cell cultures. Fibroblast-populated collagen lattices (FPCLs) are commonly used for mimicking physiological collagen matrices, potentiating biomechanical stresses on embedded fibroblasts. Here, we describe a novel 3D co-culture model that incorporates human Tenon's capsule fibroblasts embedded in FPCLs co-cultured with THP-1 monocytes suspended in culture media. This method can be used for the assessment of cell-cell interactions in various stages of the wound healing process and can facilitate various types of immune cells in co-culture. This system can also be used to study pharmacological agents that may eventually improve clinical outcomes in patients affected by inflammatory disorders.


Assuntos
Monócitos , Miofibroblastos , Humanos , Miofibroblastos/metabolismo , Técnicas de Cocultura , Monócitos/metabolismo , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/metabolismo
2.
J Child Orthop ; 18(2): 162-170, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567038

RESUMO

Objectives: Slipped capital femoral epiphyses (SCFE) is a common pediatric hip disease with the risk of osteoarthritis and impingement deformities, and 3D models could be useful for patient-specific analysis. Therefore, magnetic resonance imaging (MRI) bone segmentation and feasibility of 3D printing and of 3D ROM simulation using MRI-based 3D models were investigated. Methods: A retrospective study involving 22 symptomatic patients (22 hips) with SCFE was performed. All patients underwent preoperative hip MR with pelvic coronal high-resolution images (T1 images). Slice thickness was 0.8-1.2 mm. Mean age was 12 ± 2 years (59% male patients). All patients underwent surgical treatment. Semi-automatic MRI-based bone segmentation with manual corrections and 3D printing of plastic 3D models was performed. Virtual 3D models were tested for computer-assisted 3D ROM simulation of patients with knee images and were compared to asymptomatic contralateral hips with unilateral SCFE (15 hips, control group). Results: MRI-based bone segmentation was feasible (all patients, 100%, in 4.5 h, mean 272 ± 52 min). Three-dimensional printing of plastic 3D models was feasible (all patients, 100%) and was considered helpful for deformity analysis by the treating surgeons for severe and moderate SCFE. Three-dimensional ROM simulation showed significantly (p < 0.001) decreased flexion (48 ± 40°) and IR in 90° of flexion (-14 ± 21°, IRF-90°) for severe SCFE patients with MRI compared to control group (122 ± 9° and 36 ± 11°). Slip angle improved significantly (p < 0.001) from preoperative 54 ± 15° to postoperative 4 ± 2°. Conclusion: MRI-based 3D models were feasible for SCFE patients. Three-dimensional models could be useful for severe SCFE patients for preoperative 3D printing and deformity analysis and for ROM simulation. This could aid for patient-specific diagnosis, treatment decisions, and preoperative planning. MRI-based 3D models are radiation-free and could be used instead of CT-based 3D models in the future.

4.
Front Cell Dev Biol ; 12: 1384450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638528

RESUMO

Gastrointestinal cancers account for approximately one-third of the total global cancer incidence and mortality with a poor prognosis. It is one of the leading causes of cancer-related deaths worldwide. Most of these diseases lack effective treatment, occurring as a result of inappropriate models to develop safe and potent therapies. As a novel preclinical model, tumor patient-derived organoids (PDOs), can be established from patients' tumor tissue and cultured in the laboratory in 3D architectures. This 3D model can not only highly simulate and preserve key biological characteristics of the source tumor tissue in vitro but also reproduce the in vivo tumor microenvironment through co-culture. Our review provided an overview of the different in vitro models in current tumor research, the derivation of cells in PDO models, and the application of PDO model technology in gastrointestinal cancers, particularly the applications in combination with CRISPR/Cas9 gene editing technology, tumor microenvironment simulation, drug screening, drug development, and personalized medicine. It also elucidates the ethical status quo of organoid research and the current challenges encountered in clinical research, and offers a forward-looking assessment of the potential paths for clinical organoid research advancement.

5.
PeerJ ; 12: e17227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618567

RESUMO

Background: Nasal sprays are widely used in treating nasal and sinus diseases; however, there are very few studies on the drug delivery efficiency of nasal sprays. In this study, the drug delivery efficiency of three different nasal spray devices was evaluated in vitro using a 3D printed cast model of nasal cavity. Methods: Three nasal spray devices with different nozzles and angles of administration were used in the 3D model of the nasal cavity and paranasal sinuses. The spraying area (SA), maximal spraying distance (MSD), and spraying distribution scores on the nasal septum and lateral nasal wall were recorded. Results: Different nasal spray devices have their own characteristics, including volume of each spray, SA, and plume angle. The SA of the three nozzles on the nasal septum increased with an increasing angle of administration. When the angle of administration was 50°, each nozzle reached the maximal SA. There was no statistically significant difference in MSD among the three nozzles at the three angles. The total scores for each nozzle using the three different spraying angles were as follows: nozzle A, 40° > 30° > 50°; nozzle B, 30° > 40° > 50°; and nozzle C, 30° > 40° > 50°. The total scores for different nozzles using the same angle were statistically significantly different and the scores for nozzle C were the highest. Nozzle C had the minimum plume angle. None of the three nozzles could effectively delivered drugs into the middle meatus at any angle in this model. Conclusions: The design of the nozzle affects drug delivery efficiency of nasal spray devices. The ideal angle of administration is 50°. The nozzle with smaller plume angle has higher drug delivery efficiency. Current nasal spray devices can easily deliver drugs to most areas of the nasal cavity, such as the turbinate, nasal septum, olfactory fissure, and nasopharynx, but not the middle meatus. These findings are meaningful for nozzle selection and device improvements.


Assuntos
Cavidade Nasal , Sprays Nasais , Sistemas de Liberação de Medicamentos , Septo Nasal , Impressão Tridimensional
6.
J Clin Neurosci ; 123: 23-29, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38518385

RESUMO

Three dimensional (3D) virtual models for neurosurgery have demonstrated substantial clinical utility, especially for neuro-oncological cases. Computer-aided design (CAD) modelling of radiological images can provide realistic and high-quality 3D models which neurosurgeons may use pre-operatively for surgical planning. 3D virtual models are useful as they are the basis for other models that build off this design. 3D virtual models are quick to segment but can also be easily added to normal neurosurgical and radiological workflow without disruption. Three anatomically complex neuro-oncology cases that were referred from a single institution by three different neurosurgeons were segmented and 3D virtual models were created for pre-operative surgical planning. A face-to-face interview was performed with the surgeons after the models were delivered to gauge the usefulness of the model in pre-surgical planning. All three neurosurgeons found that the 3D virtual model was useful for presurgical planning. Specifically, the virtual model helped in planning operative positioning, understanding spatial relationship between lesion and surrounding critical anatomy and identifying anatomy that will be encountered intra-operatively in a sequential manner. It provided benefit in Multidisciplinary team (MDT) meetings and patient education for shared decision making.3D virtual models are beneficial for pre-surgical planning and patient education for shared decision making for neurosurgical neuro-oncology cases. We believe this could be further expanded to other surgical specialties. The integration of 3D virtual models into normal workflow as the initial step will provide an easier transition into modalities that build off the virtual models such as printed, virtual, augmented and mixed reality models.

7.
Front Cell Dev Biol ; 12: 1362696, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500686

RESUMO

Background: Dedifferentiated liposarcoma is a formidable sarcoma subtype due to its high local recurrence rate and resistance to medical treatment. While 2D cell cultures are still commonly used, 3D cell culture systems have emerged as a promising alternative, particularly scaffold-based techniques that enable the creation of 3D models with more accurate cell-stroma interactions. Objective: To investigate how 3D structures with or without the scaffold existence would affect liposarcoma cell lines growth morphologically and biologically. Methods: Lipo246 and Lipo863 cell lines were cultured in 3D using four different methods; Matrigel® ECM scaffold method, Collagen ECM scaffold method, ULA plate method and Hanging drop method, in addition to conventional 2D cell culture methods. All samples were processed for histopathological analysis (HE, IHC and DNAscope™), Western blot, and qPCR; moreover, 3D collagen-based models were treated with different doses of SAR405838, a well-known inhibitor of MDM2, and cell viability was assessed in comparison to 2D model drug response. Results: Regarding morphology, cell lines behaved differently comparing the scaffold-based and scaffold-free methods. Lipo863 formed spheroids in Matrigel® but not in collagen, while Lipo246 did not form spheroids in either collagen or Matrigel®. On the other hand, both cell lines formed spheroids using scaffold-free methods. All samples retained liposarcoma characteristic, such as high level of MDM2 protein expression and MDM2 DNA amplification after being cultivated in 3D. 3D collagen samples showed higher cell viability after SAR40538 treatment than 2D models, while cells sensitive to the drug died by apoptosis or necrosis. Conclusion: Our results prompt us to extend our investigation by applying our 3D models to further oncological relevant applications, which may help address unresolved questions about dedifferentiated liposarcoma biology.

8.
Eur J Immunol ; : e2350891, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509863

RESUMO

Metastatic colorectal cancer (CRC) is highly resistant to therapy and prone to recur. The tumor-induced local and systemic immunosuppression allows cancer cells to evade immunosurveillance, facilitating their proliferation and dissemination. Dendritic cells (DCs) are required for the detection, processing, and presentation of tumor antigens, and subsequently for the activation of antigen-specific T cells to orchestrate an effective antitumor response. Notably, successful tumors have evolved mechanisms to disrupt and impair DC functions, underlining the key role of tumor-induced DC dysfunction in promoting tumor growth, metastasis initiation, and treatment resistance. Conventional DC type 2 (cDC2) are highly prevalent in tumors and have been shown to present high phenotypic and functional plasticity in response to tumor-released environmental cues. This plasticity reverberates on both the development of antitumor responses and on the efficacy of immunotherapies in cancer patients. Uncovering the processes, mechanisms, and mediators by which CRC shapes and disrupts cDC2 functions is crucial to restoring their full antitumor potential. In this study, we use our recently developed 3D DC-tumor co-culture system to investigate how patient-derived primary and metastatic CRC organoids modulate cDC2 phenotype and function. We first demonstrate that our collagen-based system displays extensive interaction between cDC2 and tumor organoids. Interestingly, we show that tumor-corrupted cDC2 shift toward a CD14+ population with defective expression of maturation markers, an intermediate phenotype positioned between cDC2 and monocytes, and impaired T-cell activating abilities. This phenotype aligns with the newly defined DC3 (CD14+ CD1c+ CD163+) subset. Remarkably, a comparable population was found to be present in tumor lesions and enriched in the peripheral blood of metastatic CRC patients. Moreover, using EP2 and EP4 receptor antagonists and an anti-IL-6 neutralizing antibody, we determined that the observed phenotype shift is partially mediated by PGE2 and IL-6. Importantly, our system holds promise as a platform for testing therapies aimed at preventing or mitigating tumor-induced DC dysfunction. Overall, our study offers novel and relevant insights into cDC2 (dys)function in CRC that hold relevance for the design of therapeutic approaches.

9.
Environ Sci Pollut Res Int ; 31(17): 26123-26140, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492146

RESUMO

As an essential drinking water source and one of the largest eutrophic shallow lakes in China, the management of Lake Taihu requires an adequate understanding of its hydrodynamic characteristics. Studying the hydrodynamic characteristics of Lake Taihu based on field observations is limited owing to its large area and the lack of flow field stability. Previous studies using hydrodynamic models experienced challenges, such as dimensionality and lack of dynamic response analysis between flow field and realistic wind; therefore, the results were still inconclusive. In this study, a 3D model of Lake Taihu, calibrated and validated based on field observations, was used to simulate and compare three scenarios: windless, steady wind, and realistic wind. The hydrodynamic characteristics of Lake Taihu were analyzed as close to the actual conditions as possible. The results showed that wind-driven currents dominated the flow field in Lake Taihu, and the horizontal velocity driven by wind was more than 6 times that without wind. Observing a stable flow field in Lake Taihu was difficult because of the variability of realistic wind. The hydrodynamic characteristics of Lake Taihu were defined as "strongly affected by wind," "higher on the surface and smaller at the bottom," and "difference between the surface and the bottom." Vertical turbulent kinetic energy can be used to characterize the variable flow field of a wind-driven lake and has a positive correlation with wind speed. Therefore, it could be used as a key component to predict water blooms with practical implications.


Assuntos
Monitoramento Ambiental , Lagos , Vento , Hidrodinâmica , Eutrofização , China
10.
Urolithiasis ; 52(1): 49, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520506

RESUMO

As laser technology has advanced, high-power lasers have become increasingly common. The Holmium: yttrium-aluminum-garnet (Ho:YAG) laser has long been accepted as the standard for laser lithotripsy. The thulium fiber laser (TFL) has recently been established as a viable option. The aim of this study is to evaluate thermal dose and temperature for the Ho:YAG laser to the TFL at four different laser settings while varying energy, frequency, operator duty cycle (ODC). Utilizing high-fidelity, 3D-printed hydrogel models of a pelvicalyceal collecting system (PCS) with a synthetic BegoStone implanted in the renal pelvis, laser lithotripsy was performed with the Ho:YAG laser or TFL. At a standard power (40W) and irrigation (17.9 ml/min), we evaluated four different laser settings with ODC variations with different time-on intervals. Temperature was measured at two separate locations. In general, the TFL yielded greater cumulative thermal doses than the Ho:YAG laser. Thermal dose and temperature were typically greater at the stone when compared away from the stone. Regarding the TFL, there was no general trend if fragmentation or dusting settings yielded greater thermal doses or temperatures. The TFL generated greater temperatures and thermal doses in general than the Ho:YAG laser with Moses technology. Temperatures and thermal doses were greater closer to the laser fiber tip. It is inconclusive as to whether fragmentation or dusting settings elicit greater thermal loads for the TFL. Energy, frequency, ODC, and laser-on time significantly impact thermal loads during ureteroscopic laser lithotripsy, independent of power.


Assuntos
Lasers de Estado Sólido , Litotripsia a Laser , Humanos , Túlio , Hólmio , Hidrogéis , Rim/cirurgia , Lasers de Estado Sólido/uso terapêutico
11.
Acta Vet Scand ; 66(1): 10, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454467

RESUMO

BACKGROUND: The white rhinoceros (Ceratotherium simum) is close to extinction, listed as "Near Threatened", with a decreasing population on the Red List of Threatened Species of the International Union for Conservation of Nature. In at least 50% of the specimens in captivity, podiatric diseases, such as osteitis, osteomyelitis, chip fractures, enthesophytes, fractures and osteoarthritis were found during necropsy. These osteal deformations cause further pathogenic alterations in the soft tissues, particularly in the digital cushion. The literature provides good description of the skeleton of the rhino's limbs, but similar for the vascular system is non-existent. In order to recognize the symptoms in an early state and for a successful surgical treatment, precise knowledge of the vascular anatomy is essential. The purpose of our study was to provide detailed anatomical description of the blood supply of the digits and that of the digital cushion. RESULTS: The blood supply of the distal foot, digits and digital cushions were perfectly visible on the reconstructed and coloured 3D models. The deep palmar arch provided not only the blood supply to the digits but had a palmaro-distal running branch which developed a trifurcation proximal to the proximal sesamoid bones of the third digit. Two of its branches participated in the blood supply of the digits' proximal palmar surface, while the major branch supplied the digital cushion from proximal direction. CONCLUSIONS: Our findings show a unique blood supply: the main vessels of the digital cushion stem both directly from the deep palmar arch and from the digits' own arteries. The detailed description of vessels may be useful in planning surgery of the region and also in cases where the veins of the ear are not accessible.


Assuntos
Imageamento Tridimensional , Perissodáctilos , Animais , Imageamento Tridimensional/veterinária , Perissodáctilos/anatomia & histologia , Tomografia Computadorizada por Raios X
12.
Cureus ; 16(3): e56750, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38523873

RESUMO

Giant supratentorial brain tumors (GSBTs) in children are uncommon and extremely challenging entities unique to pediatric neurosurgery. Factors such as young patient age, need for urgent intervention, intraoperative blood loss, and ongoing raised intracranial pressure symptoms are examples of difficulties faced. Recently, there has been a growing body of literature on augmented reality (AR) in adult neurosurgery. In contrast, the use of AR in pediatric neurosurgery is comparatively less. Nonetheless, we postulate that AR systems will be helpful for understanding spatial relationships of complex GSBT anatomy for preoperative planning in a timely fashion. This study describes our experience in trialing AR as a potential tool for three cases of pediatric GSBTs. Overall, the AR platform offers our neurosurgical team excellent visuospatial insights for preoperative decision-making. However, we observe that substantial time is required to set up the AR system prior to each clinical case discussion by the neurosurgical team. In congruency with existing literature, our preliminary results report that there are still obstacles that need to be addressed before the technology can be seamlessly implemented into the clinical workflow for these time-sensitive childhood brain tumors. To our knowledge, this is the first study to report the potential use of AR for complex pediatric GSBT cases.

13.
Eur J Obstet Gynecol Reprod Biol ; 296: 286-291, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503192

RESUMO

INTRODUCTION AND HYPOTHESIS: To compare 3D models based on magnetic resonance imaging (MRI) and 3D models based on computed tomography (CT) in pelvimetry. METHODS: A retrospective analysis of 141 patients who underwent both pelvic 3D MRI and 3D CT pelvimetry for gynecological diseases from December 2009 to October 2020 was performed. The two pelvimetry methods were compared by paired Student's t test, Pearson's correlation coefficient, Bland-Altman analysis and intraclass correlation coefficient (ICC). RESULTS: The differences between methods for each diameter were statistically significant, except for those of the posterior sagittal diameter of the pelvic inlet (t:-0.71, P = 0.5) and the anteroposterior pelvic outlet diameter (t:0.02, P = 0.98). 3D MRI and 3D CT pelvimetry strongly correlated with each other (r: min 0.7, max: 0.96, P < 0.01). The Bland-Altman results indicate that the difference points of each pelvic diameter line greater than 95 % are within the 95 % limits of agreement. The ICC was good to very good for all pelvimetric measurements using either MRI-3D (ICC: 0.64-0.98) or CT-3D (ICC: 0.72-0.98) between the two readers. CONCLUSIONS: 3D MRI and 3D CT pelvimetry have good agreement and reproducibility, indicating that 3D MRI is reliable for pelvimetry.


Assuntos
Pelvimetria , Tomografia Computadorizada por Raios X , Feminino , Humanos , Pelvimetria/métodos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética/métodos
14.
J Imaging Inform Med ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483695

RESUMO

The introduction of three-dimensional (3D) printed anatomical models has garnered interest in pre-operative planning, especially in orthopedic and trauma surgery. Identifying potential error sources and quantifying their effect on the model dimensional accuracy are crucial for the applicability and reliability of such models. In this study, twenty radii were extracted from anatomic forearm specimens and subjected to osteotomy to simulate a defined fracture of the distal radius (Colles' fracture). Various factors, including two different computed tomography (CT) technologies (energy-integrating detector (EID) and photon-counting detector (PCD)), four different CT scanners, two scan protocols (i.e., routine and high dosage), two different scan orientations, as well as two segmentation algorithms were considered to determine their effect on 3D model accuracy. Ground truth was established using 3D reconstructions of surface scans of the physical specimens. Results indicated that all investigated variables significantly impacted the 3D model accuracy (p < 0.001). However, the mean absolute deviation fell within the range of 0.03 ± 0.20 to 0.32 ± 0.23 mm, well below the 0.5 mm threshold necessary for pre-operative planning. Intra- and inter-operator variability demonstrated fair to excellent agreement for 3D model accuracy, with an intra-class correlation (ICC) of 0.43 to 0.92. This systematic investigation displayed dimensional deviations in the magnitude of sub-voxel imaging resolution for all variables. Major pitfalls included missed or overestimated bone regions during the segmentation process, necessitating additional manual editing of 3D models. In conclusion, this study demonstrates that 3D bone fracture models can be obtained with clinical routine scanners and scan protocols, utilizing a simple global segmentation threshold, thereby providing an accurate and reliable tool for pre-operative planning.

15.
J Sex Med ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477106

RESUMO

BACKGROUND: The acquisition of skills in penile prosthesis surgery has many limitations mainly due to the absence of simulators and models for training. Three-dimensional (3D) printed models can be utilized for surgical simulations, as they provide an opportunity to practice before entering the operating room and provide better understanding of the surgical approach. AIM: This study aimed to evaluate and validate a 3D model of human male genitalia for penile prosthesis surgery. METHODS: This study included 3 evaluation and validation stages. The first stage involved verification of the 3D prototype model for anatomic landmarks compared with a cadaveric pelvis. The second stage involved validation of the improved model for anatomic accuracy and teaching purposes with the Rochester evaluation score. The third stage comprised validation of the suitability of the 3D prototype model as a surgical simulator and for skill acquisition. The third stage was performed at 3 centers using a modified version of a pre-existing, validated questionnaire and correlated with the Rochester evaluation score. OUTCOME: We sought to determine the suitability of 3D model for training in penile prosthesis surgery in comparison with the available cadaveric model. RESULTS: The evaluation revealed a high Pearson correlation coefficient (0.86) between questions of the Rochester evaluation score and modified validated questionnaire. The 3D model scored 4.33 ± 0.57 (on a Likert scale from 1 to 5) regarding replication of the relevant human anatomy for the penile prosthesis surgery procedure. The 3D model scored 4.33 ± 0.57 (on a Likert scale from 1 to 5) regarding its ability to improve technical skills, teach and practice the procedure, and assess a surgeon's ability. Furthermore, the experts stated that compared with the cadaver, the 3D model presented greater ethical suitability, reduced costs, and easier accessibility. CLINICAL IMPLICATIONS: A validated 3D model is a suitable alternative for penile prosthesis surgery training. STRENGTHS AND LIMITATIONS: This is the first validated 3D hydrogel model for penile prosthesis surgery teaching and training that experts consider suitable for skill acquisition. Because specific validated guidelines and questionnaires for the validation and verifications of 3D simulators for penile surgery are not available, a modified questionnaire was used. CONCLUSION: The current 3D model for penile prosthesis surgery shows promising results regarding anatomic properties and suitability to train surgeons to perform penile implant surgery. The possibility of having an ethical, easy-to-use model with lower costs and limited consequences for the environment is encouraging for further development of the models.

16.
Sci Rep ; 14(1): 4704, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409233

RESUMO

The uncertainty of structural interpretation complicates the practical production and application of data-driven complex geological structure modeling technology. Intelligent structural modeling excavates and extracts structural knowledge from structural interpretation through human-machine collaboration and combines structural interpretation to form a new model of complex structural modeling guided by knowledge. Specifically, we focus on utilizing knowledge rule reasoning technology to extract topological semantic knowledge from interpretive data and employ knowledge inference to derive structural constraint information from complex geological structure models, thus effectively constraining the 3D geological structure modeling process. To achieve this, we develop a rule-based knowledge inference system that derives theoretical models consistent with expert cognition from interpretive data and prior knowledge. Additionally, we represent the extracted knowledge as a topological semantic knowledge graph, which facilitates computer recognition and allows estimation of intersection lines during 3D geological modeling, resulting in the creation of accurate models. The applicability of our proposed method to various complex geological structures is validated through application tests using real-world data. Furthermore, our method effectively supports the realization of intelligent structure modeling in real working area.

17.
Methods Mol Biol ; 2764: 61-73, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393589

RESUMO

Biomimetic semi-synthetic hydrogels formed from a combination of star-shaped poly(ethylene glycol) (starPEG) and the glycosaminoglycan, heparin, allows for the three-dimensional (3D) culture of various cells and tissues. In this chapter, we describe methods for the use of starPEG-heparin hydrogels to cultivate primary and immortalized human acute myeloid leukemia (AML) cells. The resulting 3D culture models allow for the study of AML development and response to chemotherapeutic agents.


Assuntos
Heparina , Leucemia Mieloide Aguda , Humanos , Hidrogéis , Glicosaminoglicanos , Leucemia Mieloide Aguda/tratamento farmacológico , Polietilenoglicóis
18.
Adv Biol (Weinh) ; : e2300580, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38327154

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a challenge for global health with very low survival rate and high therapeutic resistance. Hence, advanced preclinical models for treatment screening are of paramount importance. Herein, chemotherapeutic (gemcitabine) assessment on novel (polyurethane) scaffold-based spatially advanced 3D multicellular PDAC models is carried out. Through comprehensive image-based analysis at the protein level, and expression analysis at the mRNA level, the importance of stromal cells is confirmed, primarily activated stellate cells in the chemoresistance of PDAC cells within the models. Furthermore, it is demonstrated that, in addition to the presence of activated stellate cells, the spatial architecture of the scaffolds, i.e., segregation/compartmentalization of the cancer and stromal zones, affect the cellular evolution and is necessary for the development of chemoresistance. These results highlight that, further to multicellularity, mapping the tumor structure/architecture and zonal complexity in 3D cancer models is important for better mimicry of the in vivo therapeutic response.

19.
Bioengineering (Basel) ; 11(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38391683

RESUMO

There is currently a shift in surgical training from traditional methods to simulation-based approaches, recognizing the necessity of more effective and controlled learning environments. This study introduces a completely new 3D-printed modular system for endovascular surgery training (M-SET), developed to allow various difficulty levels. Its design was based on computed tomography angiographies from real patient data with femoro-popliteal lesions. The study aimed to explore the integration of simulation training via a 3D model into the surgical training curriculum and its effect on their performance. Our preliminary study included 12 volunteer trainees randomized 1:1 into the standard simulation (SS) group (3 stepwise difficulty training sessions) and the random simulation (RS) group (random difficulty of the M-SET). A senior surgeon evaluated and timed the final training session. Feedback reports were assessed through the Student Satisfaction and Self-Confidence in Learning Scale. The SS group completed the training sessions in about half time (23.13 ± 9.2 min vs. 44.6 ± 12.8 min). Trainees expressed high satisfaction with the training program supported by the M-SET. Our 3D-printed modular training model meets the current need for new endovascular training approaches, offering a customizable, accessible, and effective simulation-based educational program with the aim of reducing the time required to reach a high level of practical skills.

20.
Sensors (Basel) ; 24(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339750

RESUMO

In order to address the challenges of small and micro-water pollution in parks and the low level of 3D visualization of water quality monitoring systems, this research paper proposes a novel wireless remote water quality monitoring system that combines the Internet of Things (IoT) and a 3D model of reality. To begin with, the construction of a comprehensive 3D model relies on various technologies, including unmanned aerial vehicle (UAV) tilt photography, 3D laser scanning, unmanned ship measurement, and close-range photogrammetry. These techniques are utilized to capture the park's geographical terrain, natural resources, and ecological environment, which are then integrated into the three-dimensional model. Secondly, GNSS positioning, multi-source water quality sensors, NB-IoT wireless communication, and video surveillance are combined with IoT technologies to enable wireless remote real-time monitoring of small and micro-water bodies. Finally, a high-precision underwater, indoor, and outdoor full-space real-scene three-dimensional visual water quality monitoring system integrated with IoT is constructed. The integrated system significantly reduces water pollution in small and micro-water bodies and optimizes the water quality monitoring system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...